Calculus I	Name:
Study Guide 8	Class:
Due Date:	Score:

No Work \Leftrightarrow No Points

Use Pencil Only \Leftrightarrow Be Neat & Organized

1. (3 points) Prove $\frac{d}{dx} \left[x^2 \right] = 2x.$

2. (4 points) Prove $\frac{d}{dx} [x^3] = 3x^2$.

3. (5 points) Prove
$$\frac{d}{dx} \left[\sqrt{x} \right] = \frac{1}{2\sqrt{x}}$$
.

4. (5 points) Find the equation of the tangent line to the graph of $f(x) = x^3 + x^2$ at x = 1.

4. ____

5. (5 points) Find the equation of the normal line to the graph of $f(x) = (x-2)^2 + 3$ at x = 3.

6. (5 points) Find the equation of the tangent line to the graph of $f(x) = \frac{x}{x-2}$ at the point (4,2).

6. _____

7. _____

7. (5 points) Find
$$\frac{d}{dx} [f'(x)]$$
 for $f(x) = (x^2 + 4)(x + 2)(x - 2)$.

8. (5 points) Use the quotient rule to find a formula for $\frac{d}{dx} \left[\frac{1}{f(x)} \right]$.

8. _

9. (5 points) Use the product rule to find a formula for $\frac{d}{dx} \left[f(x)g(x)h(x) \right]$.

9. ______
10. Find
$$f'(x)$$
 for
(a) (2 points) $f(x) = \pi$
(b) (2 points) $f(x) = t^2 - 4t$
(c) (2 points) $f(x) = \sin^2 x + \cos^2 x$
(d) (2 points) $f(x) = \tan^2 x - \sec^2 x$
(d) _____
(d) _____
(d) _____
(d) _____
(e) _____
(d) _____
(e) _____
(f) _____
(f) _____
(f) _____
(f) _____
(g) _____
(h) ____
(h) _____
(h) ______
(h) _____
(h) ______
(h) _____
(h) ______
(
